A NEW SYNTHETIC APPROACH TO PSEUDOGUAIANES.

A. Alexakis, M. J. Chapdelaine, G. H. Posner* and A. W. Runquist

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218

The potential medicinal properties of and the synthetic challenge offered by hydro-azulenic lactones have made them the object of much recent work. The most common routes to the hydroazulene carbon framework have been: rearrangement of bicyclic compounds, olefin cyclization and cleavage of tricyclic ring systems. An extension of our ongoing studies of organocuprate β -addition followed by α -alkylation of α , β -enones seemed to offer an alternative approach to the pseudoguaiane system.

Z- and E-1-Hexenyl bromides 1 were readily prepared, equation (1). Condensation of the corresponding vinyl Grignard⁵ reagents with 3-ethoxy-2-cyclopentenone,⁶ followed by mild hydrolytic work-up, gave dienone 2 as a mixture of isomers in 73% yield after column chromatography. Copper-catalyzed (5% CuBr·S(CH₃)₂)⁷ 1,6-addition of 2-propenylmagnesium bromide to crude or pure dienone 2 yielded 66% of ketal cyclopentenone 3 which was quantitatively hydrolyzed to ketone 4 using oxalic acid in methanol-water at room temperature.

The best results for direct β -addition and subsequent intramolecular enolate cyclo-alkylation were achieved by adding two equivalents of methylmagnesium chloride and one equivalent of copper bromide-dimethyl sulfide complex to cyclopentenone 4. β -Hydroxy ketone 5 was then dehydrated to give approximately a 2:1 mixture of pseudoguaiane isomers 6a and 6b in 70% yield, equation (3).

Alternatively, an <u>indirect</u> β -addition cycloalkylation route proved to be even more effective. Regiocontrolled formation of silyl enol ether 7 was followed by titanium tetrachloride - mediated intramolecular condensation 9 to give hydroazulenone $6c^{10,11}$ in 55% overall yield from ketal cyclopentenone 3, equation (4).

The synthetic procedure, herein described, thus offers a new and efficient route to pseudoguaianes and potentially also to pseudoguaninolides.

Et0
$$\frac{1)}{2) H_30^+}$$

$$\frac{1}{2) H_30^+}$$

$$\frac{Catalytic}{CuBr \cdot SMe_2}$$

$$\frac{CuBr \cdot SMe_2}{(66\%)}$$

Me-Metal

- 2 eq Me₂CuLi 2 eq MeMgCl + 10% CuBr·SMe₂
- 2 eq MeMgCl + 1 eq CuBr·SMe2

Yield of 5

- 10% 15% 25%

Spectral data for $\underline{6a}$, $\underline{6b}$, $\underline{6c}$: ir(CHCl₃) 1710 cm⁻¹; uv(EtOH) λ max 248 nm, ϵ = 13,654; high resolution ms calc. for $C_{15}H_{22}O$, 218.167, found 218.171;

¹H NMR	CH ₃ -C=C <u>H</u> 2	C ₁₀ -CH ₃	CH ₃ -C=CH ₂	C ₅ -CH ₃	
6a	4.64 (m)	2.21 (s)	1.69 (s)	1.16 (s)	
<u>6</u> ь	4.64 (m)	2.25 (s)	1.69 (s)	1.21 (s)	
<u>6c</u>		2.18 (s)	1.56 (s,) $= \left\langle \frac{\text{CH}_3}{\text{CH}_3} \right $	1.19 (s)	

^{1 3} CNMR	C 1	C ₂	C 3	C 4	C 5	C 6	C ₇	C 8
6a	138.17s	208.13s	47.37t	36.86t	44.55s	31.89t	39.44d	37.60t
6b	138.17s	208.13s	47.37t	35.57t	44.73s	32.76t	42.23d	37.82t
6c	138.17s	208.13s	49.26t	36.84t	44.40s	34.35t	147.94s	39.13t
^{1 3} CNMR	C ₉	C 10	C 11	C 12	C 13	C 14	C 15	
<u>6</u> a	20.54t	154.00s	148.26s	108.92m	20.82m	22.54q	26.04q	-
6ь	20.54t	154.00s	149.91s	109.12m	20.03m	22.54q	28.80q	
6c	20.93t	154.00s	114.16s	26.04q	26.13q	22.54q	29.08q	

Acknowledgment. We thank the NIH (CA-12658) for generous financial support.

References

- S. M. Kupchan, M. A. Eakin and A. M. Thomas, <u>J. Med. Chem.</u>, <u>14</u>, 1147 (1971).
- J. A. Marshall and W. F. Huffman, J. Amer. Chem. Soc., 92, 6358 (1970);
 R. A. Kretchmer and W. M. Schafer, J.Org. Chem., 38, 95 (1973); J. A. Marshall and W. R. Snyder, ibid., 40, 1656 (1975); J. A. Marshall and W. R. Snyder, Syn. Comm., 5, 43 (1975); J. A. Marshall and R. H. Ellison, J. Amer. Chem. Soc., 98, 4312 (1976); P. A. Grieco, Y. Ohfune and G. Majetich, ibid., 29, 7393 (1977); P. De Clercq and M. Vandewalle, J. Org. Chem., 42, 3447 (1977); L. A. Macaira, M. Garcia and J. A. Rabi, J. Org. Chem., 42, 4207 (1977).
- 3. For a review of hydroazulene snythesis see J. A. Marshall, Synthesis, 1972, 517.
- G. H. Posner, J. J. Sterling, C. E. Whitten, C. M. Lentz and D. J. Brunelle, J. Amer. Chem. Soc., 97, 107 (1975) and references cited therein; G. H. Posner and C. M. Lentz, Tetrahedron Letters, 1977, 3215; Cf F. Näf, R. Decorzant, and W. Thommen, Helv. Chim. Acta, 58, 1808 (1975).
- 5. Cl. Feugas, Bull. Soc. Chim. Fr., 1963, 2579.
- W. F. Gannon and H. O. House, "Organic Synthesis," collect. vol. V, Wiley, New York, N. Y., 1973, p. 539.
- 7. H. O. House, C. Y. Chu, J. M. Wilkins and M. J. Umen, <u>J. Org. Chem</u>., <u>40</u>, 1460 (1975).
- 8. In general, the trapping of "copper enolates" with anything other than alkylating agents has resulted in modest yields; see T. Shono, I. Nishiguchi and M. Sasaki, <u>J. Amer. Chem. Soc.</u>, <u>100</u>, 000 (1978) and references cited therein.
- K. Narasaka, K. Soai and T. Mukaiyama, Chem. Letters, 1974, 1223; T. Mukaiyama, K. Banno and K. Narasaka, J. Amer. Chem. Soc., 96, 7503 (1974); K. Narasaka, K. Soai, Y. Aikawa and T. Mukaiyama, Bull. Chem. Soc. Jap., 49, 779 (1976); A. Ishida and T. Mukaiyama, Chem. Letters, 1977, 467; for a review of this versatile reagent see T. Mukaiyama, Agnew. Chem. Int. Ed.Engl., 16, 817 (1977).
- 10. The isolation of enone 6c, rather than the β-alkoxy compound, is not surprising in light of the fact that upon standing in diethyl ether for one week at room temperature 5 dehydrates spontaneously to 6 a 8 b.
- 11. Attempted base catalyzed aldol of the dione desired products.

(Received in USA 1 June 1978)